Well-posedness of the Muskat problem with H2 initial data
نویسندگان
چکیده
منابع مشابه
Well-posedness of the Muskat problem with H2 initial data
Article history: Received 30 December 2014 Accepted 13 August 2015 Available online xxxx Communicated by Charles Fefferman MSC: 35R35 35Q35 35S10 76B03
متن کاملWell-posedness for the Heat Flow of Biharmonic Maps with Rough Initial Data
This paper establishes the local (or global, resp.) well-posedness of the heat flow of bihharmonic maps from R to a compact Riemannian manifold without boundary for initial data with small local BMO (or BMO, resp.) norms.
متن کاملLow Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data
The Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition is considered. Local well-posedness for data u0 in the space b H r (T), defined by the norms ‖u0‖ b Hs r (T) = ‖〈ξ〉 s b u0‖lr′ ξ , is shown in the parameter range s ≥ 1 2 , 2 > r > 4 3 . The proof is based on an adaptation of the gauge transform to the periodic setting and an appropriate varian...
متن کاملWell-posedness for the heat flow of polyharmonic maps with rough initial data
We establish both local and global well-posedness of the heat flow of polyharmonic maps from R to a compact Riemannian manifold without boundary for initial data with small BMO norms.
متن کاملWell-posedness of the Water-wave Problem with Surface Tension
In this paper, we prove the local well-posedness of the water wave problem with surface tension in the case of finite depth by working in the Eulerian setting. For the flat bottom, as surface tension tends to zero, the solution of the water wave problem with surface tension converges to the solution of the water wave problem without surface tension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2016
ISSN: 0001-8708
DOI: 10.1016/j.aim.2015.08.026